Quaternion 的定义 四元数一般定义如下:

q=w+xi+yj+zk

其中 w,x,y,z是实数。同时,有:

i*i=-1

j*j=-1

k*k=-1

四元数也可以表示为:

q=[w,v]

其中v=(x,y,z)是矢量,w是标量,虽然v是矢量,但不能简单的理解为3D空间的矢量,它是4维空间中的的矢量,也是非常不容易想像的。

通俗的讲,一个四元数(Quaternion)描述了一个旋转轴和一个旋转角度。这个旋转轴和这个角度可以通过 Quaternion::ToAngleAxis转换得到。当然也可以随意指定一个角度一个旋转轴来构造一个Quaternion。这个角度是相对于单位四元数而言的,也可以说是相对于物体的初始方向而言的。

当用一个四元数乘以一个向量时,实际上就是让该向量围绕着这个四元数所描述的旋转轴,转动这个四元数所描述的角度而得到的向量。

四元组的优点1 有多种方式可表示旋转,如 axis/angle、欧拉角(Euler angles)、矩阵(matrix)、四元组等。 相对于其它方法,四元组有其本身的优点:

四元数不会有欧拉角存在的 gimbal lock 问题四元数由4个数组成,旋转矩阵需要9个数两个四元数之间更容易插值四元数、矩阵在多次运算后会积攒误差,需要分别对其做规范化(normalize)和正交化(orthogonalize),对四元数规范化更容易与旋转矩阵类似,两个四元组相乘可表示两次旋转 Quaternion 的基本运算1 Normalizing a quaternion // normalising a quaternion works similar to a vector. This method will not do anything

// if the quaternion is close enough to being unit-length. define TOLERANCE as something

// small like 0.00001f to get accurate results

void Quaternion::normalise()

{

// Don't normalize if we don't have to

float mag2 = w * w + x * x + y * y + z * z;

if ( mag2!=0.f && (fabs(mag2 - 1.0f) > TOLERANCE)) {

float mag = sqrt(mag2);

w /= mag;

x /= mag;

y /= mag;

z /= mag;

}

}

The complex conjugate of a quaternion // We need to get the inverse of a quaternion to properly apply a quaternion-rotation to a vector

// The conjugate of a quaternion is the same as the inverse, as long as the quaternion is unit-length

Quaternion Quaternion::getConjugate()

{

return Quaternion(-x, -y, -z, w);

}

Multiplying quaternions // Multiplying q1 with q2 applies the rotation q2 to q1

Quaternion Quaternion::operator* (const Quaternion &rq) const

{

// the constructor takes its arguments as (x, y, z, w)

return Quaternion(w * rq.x + x * rq.w + y * rq.z - z * rq.y,

w * rq.y + y * rq.w + z * rq.x - x * rq.z,

w * rq.z + z * rq.w + x * rq.y - y * rq.x,

w * rq.w - x * rq.x - y * rq.y - z * rq.z);

}

Rotating vectors // Multiplying a quaternion q with a vector v applies the q-rotation to v

Vector3 Quaternion::operator* (const Vector3 &vec) const

{

Vector3 vn(vec);

vn.normalise();

Quaternion vecQuat, resQuat;

vecQuat.x = vn.x;

vecQuat.y = vn.y;

vecQuat.z = vn.z;

vecQuat.w = 0.0f;

resQuat = vecQuat * getConjugate();

resQuat = *this * resQuat;

return (Vector3(resQuat.x, resQuat.y, resQuat.z));

}

How to convert to/from quaternions1 Quaternion from axis-angle // Convert from Axis Angle

void Quaternion::FromAxis(const Vector3 &v, float angle)

{

float sinAngle;

angle *= 0.5f;

Vector3 vn(v);

vn.normalise();

sinAngle = sin(angle);

x = (vn.x * sinAngle);

y = (vn.y * sinAngle);

z = (vn.z * sinAngle);

w = cos(angle);

}

Quaternion from Euler angles // Convert from Euler Angles

void Quaternion::FromEuler(float pitch, float yaw, float roll)

{

// Basically we create 3 Quaternions, one for pitch, one for yaw, one for roll

// and multiply those together.

// the calculation below does the same, just shorter

float p = pitch * PIOVER180 / 2.0;

float y = yaw * PIOVER180 / 2.0;

float r = roll * PIOVER180 / 2.0;

float sinp = sin(p);

float siny = sin(y);

float sinr = sin(r);

float cosp = cos(p);

float cosy = cos(y);

float cosr = cos(r);

this->x = sinr * cosp * cosy - cosr * sinp * siny;

this->y = cosr * sinp * cosy + sinr * cosp * siny;

this->z = cosr * cosp * siny - sinr * sinp * cosy;

this->w = cosr * cosp * cosy + sinr * sinp * siny;

normalise();

}

Quaternion to Matrix // Convert to Matrix

Matrix4 Quaternion::getMatrix() const

{

float x2 = x * x;

float y2 = y * y;

float z2 = z * z;

float xy = x * y;

float xz = x * z;

float yz = y * z;

float wx = w * x;

float wy = w * y;

float wz = w * z;

// This calculation would be a lot more complicated for non-unit length quaternions

// Note: The constructor of Matrix4 expects the Matrix in column-major format like expected by

// OpenGL

return Matrix4( 1.0f - 2.0f * (y2 + z2), 2.0f * (xy - wz), 2.0f * (xz + wy), 0.0f,

2.0f * (xy + wz), 1.0f - 2.0f * (x2 + z2), 2.0f * (yz - wx), 0.0f,

2.0f * (xz - wy), 2.0f * (yz + wx), 1.0f - 2.0f * (x2 + y2), 0.0f,

0.0f, 0.0f, 0.0f, 1.0f)

}

Quaternion to axis-angle // Convert to Axis/Angles

void Quaternion::getAxisAngle(Vector3 *axis, float *angle)

{

float scale = sqrt(x * x + y * y + z * z);

axis->x = x / scale;

axis->y = y / scale;

axis->z = z / scale;

*angle = acos(w) * 2.0f;

}

Quaternion 插值2 线性插值 最简单的插值算法就是线性插值,公式如:

q(t)=(1-t)q1 + t q2

但这个结果是需要规格化的,否则q(t)的单位长度会发生变化,所以

q(t)=(1-t)q1+t q2 / || (1-t)q1+t q2 ||

球形线性插值 尽管线性插值很有效,但不能以恒定的速率描述q1到q2之间的曲线,这也是其弊端,我们需要找到一种插值方法使得q1->q(t)之间的夹角θ是线性的,即θ(t)=(1-t)θ1+t*θ2,这样我们得到了球形线性插值函数q(t),如下:

q(t)=q1 * sinθ(1-t)/sinθ + q2 * sinθt/sineθ

如果使用D3D,可以直接使用 D3DXQuaternionSlerp 函数就可以完成这个插值过程。

用 Quaternion 实现 Camera 旋转 总体来讲,Camera 的操作可分为如下几类:

沿直线移动围绕某轴自转围绕某轴公转 下面是一个使用了 Quaternion 的 Camera 类:

class Camera {

private:

Quaternion m_orientation;

public:

void rotate (const Quaternion& q);

void rotate(const Vector3& axis, const Radian& angle);

void roll (const GLfloat angle);

void yaw (const GLfloat angle);

void pitch (const GLfloat angle);

};

void Camera::rotate(const Quaternion& q)

{

// Note the order of the mult, i.e. q comes after

m_Orientation = q * m_Orientation;

}

void Camera::rotate(const Vector3& axis, const Radian& angle)

{

Quaternion q;

q.FromAngleAxis(angle,axis);

rotate(q);

}

void Camera::roll (const GLfloat angle) //in radian

{

Vector3 zAxis = m_Orientation * Vector3::UNIT_Z;

rotate(zAxis, angleInRadian);

}

void Camera::yaw (const GLfloat angle) //in degree

{

Vector3 yAxis;

{

// Rotate around local Y axis

yAxis = m_Orientation * Vector3::UNIT_Y;

}

rotate(yAxis, angleInRadian);

}

void Camera::pitch (const GLfloat angle) //in radian

{

Vector3 xAxis = m_Orientation * Vector3::UNIT_X;

rotate(xAxis, angleInRadian);

}

void Camera::gluLookAt() {

GLfloat m[4][4];

identf(&m[0][0]);

m_Orientation.createMatrix (&m[0][0]);

glMultMatrixf(&m[0][0]);

glTranslatef(-m_eyex, -m_eyey, -m_eyez);

}

用 Quaternion 实现 trackball 用鼠标拖动物体在三维空间里旋转,一般设计一个 trackball,其内部实现也常用四元数。

class TrackBall

{

public:

TrackBall();

void push(const QPointF& p);

void move(const QPointF& p);

void release(const QPointF& p);

QQuaternion rotation() const;

private:

QQuaternion m_rotation;

QVector3D m_axis;

float m_angularVelocity;

QPointF m_lastPos;

};

void TrackBall::move(const QPointF& p)

{

if (!m_pressed)

return;

QVector3D lastPos3D = QVector3D(m_lastPos.x(), m_lastPos.y(), 0.0f);

float sqrZ = 1 - QVector3D::dotProduct(lastPos3D, lastPos3D);

if (sqrZ > 0)

lastPos3D.setZ(sqrt(sqrZ));

else

lastPos3D.normalize();

QVector3D currentPos3D = QVector3D(p.x(), p.y(), 0.0f);

sqrZ = 1 - QVector3D::dotProduct(currentPos3D, currentPos3D);

if (sqrZ > 0)

currentPos3D.setZ(sqrt(sqrZ));

else

currentPos3D.normalize();

m_axis = QVector3D::crossProduct(lastPos3D, currentPos3D);

float angle = 180 / PI * asin(sqrt(QVector3D::dotProduct(m_axis, m_axis)));

m_axis.normalize();

m_rotation = QQuaternion::fromAxisAndAngle(m_axis, angle) * m_rotation;

m_lastPos = p;

}

Yaw, pitch, roll 的含义3 Yaw – Vertical axis:

yaw Pitch – Lateral axis

pitch Roll – Longitudinal axis

roll The Position of All three axes

Yaw Pitch Roll

Copyright © 2088 世界杯直播cctv5_世界杯阿根 - sunjianping.com All Rights Reserved.
友情链接
top